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Our Motivating Scenarios: State Estimation and Mapping is Safety-
Critical and Requires High Accuracy  for Autonomous Systems

DARPA SubT (2nd place in Urban, 1st place in 
Tunnel)

Offroad Driving by Learning from Demonstration Wildfire Monitoring

Caves Tunnel Offroad Smoke



Team Coordination: Aerial Autonomy
UNCLASSIFIED

UNCLASSIFIED



Vision
• A robust, real-time semantically and multi-agent aware way to 

understand where we are in the world.

• Unified inference between the different modules 

• Transition to combine it with perception and dynamic modules.

However, robustness is still the greatest challenge for SLAM today!

Challenges:
• Appearance variation across time
• Methods sensitive to outliers
• Computational tradeoffs

Robustness
(fail-safe and failure aware )

Typical focus, easy to 
measure

Efficiency
(Speed, memory and CPU load)

Accuracy



Robust SLAM systems require datasets and algorithms that 
enable operation in  a  

large range of scenarios from simulation to real-world 
including multi-modal, multi-robot and 

multiple challenges. 



Sim2Real: Digital World Meets the Physical World  

SubT Degraded UnderwaterIndoor Urban Aerial

Day Vs Night >30° View Shift

Unreal2Unreal1 Unreal3

Urban3Urban1 Urban2

Nature3Nature1 Nature2

Indoor3Indoor2Indoor1

EuRoC Datasets
KITTI Datasets

ICCV SLAM Challenge

SubT-MRS Datasets provides 8X More Diverse Data

SubT DegradedIndoor Aerial

HawkinsLaurel Caverns

Off-road

SubT

Tartan Air Datasets SubT-MRS Datasets

Laurel Caverns stair
s

Dust &
smoke

Diverse speed

Long CorridorIllumination Snow 

Dust & Smoke

Offroad

snow 

Illumination Changes

Mixed indoor-outdoor Long corridor Fog Environment

Tunnel & Cave

Dark Stairs



ICCV 2023 SLAM Challenge Summary

There are no current solutions that can balance high accuracy and real-time
performance in challenging environments.

In the sensor fusion track, which addresses both visual and geometric 
degradation, no submissions met the criteria for success.

SubT-MRS



How do we achieve robustness for SLAM?





Visual + Thermal Visual Inertial Odometry
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Visual Odometry - Learning-based Dense 
Stereo Mapping (TartanVO Stereo)



AirIMU: Learning Uncertainty 
Propagation for Inertial 

Odometry 
Yuheng Qiu, Chen Wang, Can Xu, Yutian Chen, Xunfei

Zhou, Youjie Xia and Sebastian Scherer

theairlab.org
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● Robustness
○ No outside references required

● IMU (Inertial Measurement Unit)
○ Fundamental: acceleration & angular 

velocity
○ Popular: Almost in any smart device
○ Low cost (cheap IMU only cost 2$)

Background: IMU determines your lower bound

SuperOdometry [2]

Qiu, Yuheng, et al. "AirIMU: Learning Uncertainty Propagation for Inertial Odometry." arXiv preprint (2023).
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● Robustness
○ No outside references required

● IMU (Inertial Measurement Unit)
○ Fundamental: acceleration & angular 

velocity
○ Popular: Almost in any smart device
○ Low cost (cheap IMU only cost 2$)
○ Robust Guaranteed (Inertial only)

Lidar may be blocked, Camera may fail, But 
IMU will not.

● Frequency and Accuracy
○ High-frequency state estimation for control
○ High-accuracy local state estimation 

Background: IMU determines your upper bound

ALTO dataset [1]: IMU integration 
from helicopter flight data

Qiu, Yuheng, et al. "AirIMU: Learning Uncertainty Propagation for Inertial Odometry." arXiv preprint (2023).
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Problems: IMU Noise and Uncertainty

• Reducing Noise: Drift is unavoidable due to 
integration and IMU noise.

IMU integration on KITTI dataset

Uncertainty of different sensors 
in BA optimization

• Characterizing Uncertainty: 
Uncertainty determines how long 
and how well you can trust the 
IMU

Qiu, Yuheng, et al. "AirIMU: Learning Uncertainty Propagation for Inertial Odometry." arXiv preprint (2023).



Qiu, Yuheng, et al. "AirIMU: Learning Uncertainty Propagation for Inertial Odometry." arXiv preprint (2023).
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Benefit:

1. Differentiable Integrator
2. Uncertainty-aware IMU model
3. Generalizable across modality

AirIMU serve dual purposes to correct 
noise and estimate the uncertainty

AirIMU: Model and Approach



Qiu, Yuheng, et al. "AirIMU: Learning Uncertainty Propagation for Inertial Odometry." arXiv preprint (2023).
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AirIMU: Model and Approach
1. We design a shared CNN-
GRU encoder to encode raw IMU 
data.

2. To supervise covariance model 
we build a differentiable 
covariance propagation method.
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Datasets and Benchmarks: Learning-based methods

Integration Accuracy: TUMVI, EuRoC

Learning inertial odometry: KITTI

Ablation Study: Subt-MRS

GPS-denied Navigation: ALTO

Qiu, Yuheng, et al. "AirIMU: Learning Uncertainty Propagation for Inertial Odometry." arXiv preprint (2023).
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TUMVI: Automotive-Grade

Qiu, Yuheng, et al. "AirIMU: Learning Uncertainty Propagation for Inertial Odometry." arXiv preprint (2023).

~$3 ~$500 ~$1400
~$25000

>$50000
692m 893m

3834m

24.45km

200km

TUMVI EuRoC SubT-MRS KITTI ALTO

AirIMU can further improve based on the Kalibr
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EuRoC: Industrial-Grade IMU

Qiu, Yuheng, et al. "AirIMU: Learning Uncertainty Propagation for Inertial Odometry." arXiv preprint (2023).

~$3 ~$500 ~$1400
~$25000

>$50000
692m 893m

3834m

24.45km

200km

TUMVI EuRoC SubT-MRS KITTI ALTO

Compared to learned method
40% improvement in RMSE.
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KITTI: Tactical-Grade IMU

Qiu, Yuheng, et al. "AirIMU: Learning Uncertainty Propagation for Inertial Odometry." arXiv preprint (2023).

~$3 ~$500 ~$1400
~$25000

>$50000
692m 893m

3834m

24.45km

200km

TUMVI EuRoC SubT-MRS KITTI ALTO

The accumulated error on the 
velocity is stable and small
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Subt-MRS: Tactical-Grade IMU

Qiu, Yuheng, et al. "AirIMU: Learning Uncertainty Propagation for Inertial Odometry." arXiv preprint (2023).

~$3 ~$500 ~$1400
~$25000

>$50000
692m 893m

3834m

24.45km

200km

TUMVI EuRoC SubT-MRS KITTI ALTO



23

ALTO: Navigation-Grade IMU

Qiu, Yuheng, et al. "AirIMU: Learning Uncertainty Propagation for Inertial Odometry." arXiv preprint (2023).

~$3 ~$500 ~$1400
~$25000

>$50000
692m 893m

3834m

24.45km

200km

TUMVI EuRoC SubT-MRS KITTI ALTO



IMU-centric PGO
IMU-centric GPS Graph optimization performed at 0.1 Hz.

Qiu, Yuheng, et al. "AirIMU: Learning Uncertainty Propagation for Inertial Odometry." arXiv preprint (2023).



~$3 ~$500
~$1400

~$25000

>$50000
692m 893m

3834m

24.45km

200km

TUMVI EuRoC SubT-MRS KITTI ALTO

Automotive
Grade

Industrial Grade Tactical Grade Navigation Grade

ROE(1s): 80.7%
RTE (1s): 77.2%

R-RMSE(1s): 97.1%  
P-RMSE(1s): 73.8%

ROE(5s): 72.6%
RTE(5s):  42.1%

ATE: 14.7% Accum Velo Err: 54.9%
Landing Drift: 73.2%

Improvement Compared to Baseline (Raw Data):

Experiment Summary



Conclusion

AirIMU servers dual purposes to correct 
noise and estimate the uncertainty

Testing on a range of IMU types showcases
the effectiveness of the methodBetter uncertainty improves pose graph

optimization and sensor fusion



AnyLoc: Towards 
Universal Visual Place 

Recognition
Nikhil Keetha, Avneesh Mishra, Jay Karhade, Krishna Murthy Jatavallabhula,

Sebastian Scherer, Madhava Krishna, Sourav Garg
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Keetha et.al, AnyLoc: Towards Universal Visual Place Recognition, RA-L 2023 & ICRA 2024

Fundamental Question of “Where Am I”?

Humans & Robots alike need to know where they are
for Scene Understanding & Navigation

Have I seen this 
before?

How can we achieve this?



29

Anywhere

29
Keetha et.al, AnyLoc: Towards Universal Visual Place Recognition, RA-L 2023 & ICRA 2024
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Anytime

Anywhere

Keetha et.al, AnyLoc: Towards Universal Visual Place Recognition, RA-L 2023 & ICRA 2024
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Anywhere

Anytime

Anyview

Keetha et.al, AnyLoc: Towards Universal Visual Place Recognition, RA-L 2023 & ICRA 2024
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SubT Degraded UnderwaterIndoor Urban Aerial

> 90° View ShiftDay Vs Night < 90° View Shift

HawkinsLaurel Caverns Mid-Atlantic Ridge

Pitts-30kOxford RobotCar St Lucia

VP-AirNardo-Air Nardo-Air R

Baidu Mall17 PlacesGardens Point

Large-Scale VPR Training

Supervised SOTA VPR 
Baselines

Recall@1

MixVPR
NetVLAD

Perform well in Training Distribution (Urban)

Keetha et.al, AnyLoc: Towards Universal Visual Place Recognition, RA-L 2023 & ICRA 2024

Current State-of-the-art (SOTA) …
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Recall@1

Do not generalize to diverse conditions

SubT Degraded UnderwaterIndoor Urban Aerial

> 90° View ShiftDay Vs Night < 90° View Shift

HawkinsLaurel Caverns Mid-Atlantic Ridge

Pitts-30kOxford RobotCar St Lucia

VP-AirNardo-Air Nardo-Air R

Baidu Mall17 PlacesGardens Point

Large-Scale VPR Training

Supervised SOTA VPR 
Baselines

Keetha et.al, AnyLoc: Towards Universal Visual Place Recognition, RA-L 2023 & ICRA 2024
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Self-Supervised Foundation Models for Generalization

DINO DINOv2

CLIP

Keetha et.al, AnyLoc: Towards Universal Visual Place Recognition, RA-L 2023 & ICRA 2024
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Suboptimal when used as-is

Foundation 
Models

Large-Scale Task-Agnostic
FreezePretraining

SubT Degraded UnderwaterIndoor Urban Aerial

> 90° View ShiftDay Vs Night < 90° View Shift

HawkinsLaurel Caverns Mid-Atlantic Ridge

Pitts-30kOxford RobotCar St Lucia

VP-AirNardo-Air Nardo-Air R

Baidu Mall17 PlacesGardens Point

Recall@1
CLIP
MixVPR

DINOv2

Keetha et.al, AnyLoc: Towards Universal Visual Place Recognition, RA-L 2023 & ICRA 2024
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Keetha et.al, AnyLoc: Towards Universal Visual Place Recognition, RA-L 2023 & ICRA 2024

AnyLoc: Use Intermediate Features from Self-Supervised ViT

Embedding & Positional Encoding

Transformer Layer L1

Transformer Layer L7

Transformer Layer L31

Transformer Layer L39

Layer 31 Value has the best contrast.
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Keetha et.al, AnyLoc: Towards Universal Visual Place Recognition, RA-L 2023 & ICRA 2024

AnyLoc: Unsupervised Local Feature Aggregation

Foundation Model 
Features

Large-Scale Task-Agnostic
FreezePretraining

VLAD: Vector of Locally 
Aggregated Descriptors GeM: Generalized Mean Pooling
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SubT Degraded UnderwaterIndoor Urban Aerial

> 90° View ShiftDay Vs Night < 90° View Shift

HawkinsLaurel Caverns Mid-Atlantic Ridge

Pitts-30kOxford RobotCar St Lucia

VP-AirNardo-Air Nardo-Air R

Baidu Mall17 PlacesGardens Point

Recall@1

Diverse Testbed consisting of 9 Datasets

Metric is Recall@K, i.e., % Accuracy using the Top K Retrievals

Keetha et.al, AnyLoc: Towards Universal Visual Place Recognition, RA-L 2023 & ICRA 2024
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Keetha et.al, AnyLoc: Towards Universal Visual Place Recognition, RA-L 2023 & ICRA 2024

AnyLoc on a Visually Degraded Environment (Hawkins)

Higher
similarity
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Keetha et.al, AnyLoc: Towards Universal Visual Place Recognition, RA-L 2023 & ICRA 2024

AnyLoc on a 500 Km Aerial Dataset (VP-Air)

No Temporal Information Used

Higher
similarity
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Keetha et.al, AnyLoc: Towards Universal Visual Place Recognition, RA-L 2023 & ICRA 2024

AnyLoc achieves up to 4X wider performance

Next Step: Precise 6-DoF Pose Estimation using Fine Pixel-level Features

Emergence of Distinct 
Domains in the Latent Space 

Foundation Model 
Features

Large-Scale VPR Training

Supervised SOTA 
VPR Baselines

Query
Database

AnyLoc-GeM-DINOv2

MixVPR

SubT Degraded UnderwaterIndoor Urban Aerial

> 90° View ShiftDay Vs Night < 90° View Shift

HawkinsLaurel Caverns Mid-Atlantic Ridge

Pitts-30kOxford RobotCar St Lucia

VP-AirNardo-Air Nardo-Air R

Baidu Mall17 PlacesGardens Point

PCA Recall@1

Large-Scale Task-Agnostic
FreezePretraining

NetVLAD
MixVPR
AnyLoc-VLAD-DINOv2

Key Takeaway: Self-Supervised Visual Features enable Universal Generalization



Geometry-Informed Distance Candidate 
Selection for Omnidirectional Stereo Vision

with Fisheye Images

theairlab.org

Conner Pulling, Je Hon Tan, Yaoyu Hu, Sebastian Scherer
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Omnidirectional Depth is an important downstream task for UAVs!
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Using fisheye images increases coverage but also 
increases problem complexity.

=
Fisheye images cover a larger field-of-view (FOV) but stereo correspondences lie on epipolar curves
instead of epipolar lines. Possible correspondences are found through warping images with depth 
guesses, called depth candidates, with a cost volume.

More Complexity & Cost VolumeIncreased Field-of-View (FOV) But…
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How does one choose depth candidates to build the cost volume?

Inverse Distance 
Candidates

Δdi = C

Reference
Camera

Query
Camera

C

C

In Previous Work…With Pinhole Cameras…

Plane-Sweeping

Warping w/ Candidates

W(I, T, di )

Sampling Grid Encodes 
Intrinsics & Extrinsics Too!



Prior Work

Method
Key Factors OmniMVS RTSS OmniVidar (Ours)
Learning-Based ✅ ❌ ✅ ✅

Real-Time Inference ❌ ✅ ✅ ✅

Full Field-of-View (FOV) ❌ ✅ ❌ ✅

Reconfigurable w/o Finetuning ❌ ✅ ❌ ✅

Self-Occlusion Masking (trinocular) ❌ ❌ ❌ ✅

OmniMVS OmniVidarRTSS



Approach



Candidates can be sampled such that the angle between camera 
rays in the reference space is constant.

48
Authors, TITLE, Publication, year …

In
ve

rs
e 

D
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nc

e 
[m

-1
]

Camera Ray Azimuth, θ [rad.]

Δθ = φ

φ

φ

b  

[ Baseline = b ]

φ φ

Reference
Camera

Query
Camera

Inverse Distance 
Candidates



Authors, TITLE, Publication, year …

In
ve

rs
e 

D
is

ta
nc

e 
[m

-1
]

Δθ = Ψ

b + Δ

[ Baseline = b + Δ ]

Reference
Camera

Query
Camera

Inverse Distance 
Candidates

Ψ

Ψ
Ψ Ψ

Camera Ray Azimuth, θ [rad.]

Note that this distribution changes when the baseline 
distance between cameras changes!
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Geometry Informed (GI) Candidates Improve 
Performance when Baseline Changes.

b

Reference
Camera

Query
Camera

Inverse Distance Candidates

Predicted

Ground 
Truth
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Changing the baseline distance after training degrades performance.

Predicted

Ground 
Truth

b + Δ

Reference
Camera

Query
Camera

Inverse Distance Candidates
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Correcting the Geomtry Informed (GI) candidate distribution after 
training restores performance without finetuning.

Predicted

Ground 
Truth

b + Δ

Reference
Camera

Query
Camera

Inverse Distance Candidates

Ψ

Ψ



Self-Occlusion Masking using Data Augmentation 
and Novel Cost Volume Aggregation

53
Random Mask Augmentation

Per-Pixel Standard Deviation of all valid views 
allows masking.



SOTA Dataset and Real-World Evaluation Setup
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Synthetic Dataset with 100k+ samples, 70 Envs. (10x 
more samples than prev. work) 

Models are compared using Mean Absolute Error (MAE), Root Mean-Squared Error (RMSE), 
and Structural Simularity Index Measure (SSIM) as in prior works.

Real Evaluation Data Collected in Difficult 
Indoor & Outdoor Environments
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Real World Inference In Outdoor Environments

Note that the self-occluding LiDar is masked out!
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Better is... (      Lower/      Higher)

GI Candidates, Variance Cost Volume (G16V), and Self-Occlusion Masking (G16VV) are all 
better/comparable to learning baselines but are more robust and adaptable.

Quantitative Results
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Contributions & Conclusions

State-of-the-Art Dataset with 
10x Data and Real Data

Geometry-Informed Candidates Pretrained, Reconfigurable, and 
Released Models

Δθ = φ

φ

φ

b  



Current Limitations & Research Directions

58

Ghost PointsNeed for Rotation Invariant 
Features

Configuration-Agnostic 
Evaluation Techniques



Summary

● We have created several challenging datasets for SLAM and place 
recognition that reflect real-world challenges for autonomous systems and 
might be useful for your research.

● There is still a significant progress required in all parts from odometry, 
mapping, to place recognition

● Robustness is more important in actual applications. What happens at the 
edge or beyond the “envelope” of your method?



60
Keetha et.al, SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM, CVPR 2024

Online Camera Tracking & Reconstruction

𝑬𝒕 = argmin
"!

𝑺𝒊𝒍 > 𝝀 ∗ (𝑹𝒆𝒏𝒅𝒆𝒓 𝑮𝒕#𝟏, 𝑬% −𝑭𝒕) 𝟏

(1) Camera Tracking 𝑬𝒕"𝟏 → 𝑬𝒕

𝑺𝒊𝒍 > 𝝀 ∗ 𝑹𝒆𝒏𝒅𝒆𝒓(𝑮𝒕#𝟏, 𝑬%)

𝑺𝒊𝒍 > 𝝀 ∗ 𝑭𝒕

(2) Gaussian Densification 𝑮𝒕𝒅

𝑹𝒆𝒏𝒅𝒆𝒓(𝑮𝒕#𝟏, 𝑬𝒕)

𝑫𝒆𝒏𝒔𝒊𝒇𝒚𝑴𝒂𝒔𝒌 ∗ 𝑭𝒕 𝑮𝒕𝒅 = 𝑫𝒆𝒏𝒔𝒊𝒇𝒚 𝑮𝒕#𝟏, 𝑭𝒕, 𝑬𝒕, 𝑺𝒊𝒍

Gaussian Map 𝑮𝒕"𝟏

𝑹𝒆𝒏𝒅𝒆𝒓(𝑮𝒕#𝟏, 𝑬𝒕#𝟏)

Incoming	Frame	𝑭𝒕Gaussian	Splats

(3) Map Update 𝑮𝒕

𝑮𝒕 = argmin
'!

N
𝒌)𝟏

𝒕

𝑹𝒆𝒏𝒅𝒆𝒓 𝑮%, 𝑬𝒌 −𝑭𝒌 𝟏

𝑹𝒆𝒏𝒅𝒆𝒓(𝑮%, 𝑬𝒕)

Current Frame 𝑭𝒕



61Keetha et.al, SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM, CVPR 2024

SplaTAM: Splat, Track & Map 3D Gaussians 
for Dense RGB-D SLAM

SLAM Visualization Novel View Synthesis



Rethinking SLAM Metrics for Robustness

Robustness Metric:

Does not consider impact of local bad measurements

Accuracy Metric:

Considers both Accuracy and Completeness



Example Robustness Metric Evaluation from ICCV 2023 SLAM Challenge

The area under the curve represents the 
robustness metric

Shibo Zhao et.al, SubTMRS: SubT-MRS Dataset: Pushing SLAM Towards All-weather Environments, CVPR 2024



Questions?


