Robust State Estimation and Mapping in Challenging Environments

Sebastian Scherer 6/17/2024

Our Motivating Scenarios: State Estimation and Mapping is Safety-Critical and Requires High Accuracy for Autonomous Systems

DARPA SubT (2nd place in Urban, 1st place in Tunnel)

Offroad Driving by Learning from Demonstration

Wildfire Monitoring

Caves

Tunnel

Offroad

Smoke

Carnegie Mellon University

Team Explorer Aerial Autonomy

Vision

- A robust, real-time semantically and multi-agent aware way to understand where we are in the world.
- Unified inference between the different modules
- Transition to combine it with perception and dynamic modules.

However, robustness is still the greatest challenge for SLAM today!

Challenges:

- Appearance variation across time
- Methods sensitive to outliers
- Computational tradeoffs

SubT Final

Robust SLAM systems require datasets and algorithms that enable operation in a large range of scenarios from simulation to real-world including multi-modal, multi-robot and

multiple challenges.

Carnegie Mellon University The Robotics Institute

SubT-MRS Datasets provides 8X More Diverse Data

Sim2Real: Digital World Meets the Physical World

ICCV 2023 SLAM Challenge Summary

#	Team	Method	Odometry Type	Device	RealTime (s)	CPU/GPU (%)	RAM (GB)	ATE↓	$R_v \uparrow / R_w \uparrow$	Sensors LIC
1	Liu et al	FAST-LIO2 [50], HBA [27]	Filter	Intel i7-9700K	51.310	98.667 / 0	4.052	0.588	0.517/0.770	\checkmark
2	Yibin et al	LIO-EKF [44]	Filter	Intel i7-10700	0.006	52.167 / 0	0.072	4.313	0.441/0.574	\checkmark
3 V	Weitong et al	FAST-LIO[2], Pose Graph[10]	Filter	Intel Xeon(R)E3-1240v5	0.125	22.63 / 0	4.305	0.663	0.473/0.747	$\checkmark\checkmark$
4	Kim et al	FAST-LIO2[49], Point-LIO[19], Quatro[25]	Filter	Intel i5-12500	0.268	101.108 / 0	55.64	3.825	0.479/0.615	\checkmark
5	Zhong et al	DLO[7], Scan-Context++[21]	SW Opt	AMD Ryzen 9 5900x	0.027	13.289 / 0	1.174	1.209	0.276/0.486	$\checkmark\checkmark$
1	Peng et al	DVI-SLAM [32]	Learning	Intel i9-12900	183.233	- / 149	11 (4)	0.547	0.473/0.788	√ √
2	Jiang et al	LET-NET[26], VINS-Mono[34]	Hybrid	Intel i5-9400	0.064	40.35 / 0	4.337	1.093	0.078/0.322	\checkmark
3	Thien et al	VR-SLAM[31]	SW Opt	Intel i9-12900	0.142	176.44 / 0	9.111	3.037	0.083/0.372	\checkmark
4	Li et al	ORB-SLAM3[4]	SW Opt.	Intel i7-10700	0.019	65.028 / 0	0.386	8.975	0.163/0.474	\checkmark

 Table 2. SLAM Challenge Results (Blue shadings indicate rankings)

There are no current solutions that can balance **high accuracy** and **real-time** performance in challenging environments.

In the sensor fusion track, which addresses **both visual and geometric** degradation, no submissions met the criteria for success.

SubT-MRS

Carnegie Mellon University

How do we achieve robustness for SLAM?

Carnegie Mellon University The Robotics Institute

Super Odometry 2: Multi Spectral Odometry in Smoke Environments

Integrated the Multi Spectral Odometry into Super Odometry Pipeline

Visual + Thermal Visual Inertial Odometry

Visual Odometry - Learning-based Dense Stereo Mapping (TartanVO Stereo)

 Displays
 Global Options Fixed Frame

Background Color Frame Rate Default Light

Carnegie Mellon University The Robotics Institute

AirIMU: Learning Uncertainty Propagation for Inertial Odometry

Yuheng Qiu, Chen Wang, Can Xu, Yutian Chen, Xunfei Zhou, Youjie Xia and Sebastian Scherer

Background: IMU determines your lower bound

- IMU (Inertial Measurement Unit)
 - Fundamental: acceleration & angular velocity
 - Popular: Almost in any smart device
 - Low cost (cheap IMU only cost 2\$)
 - Robustness
 - No outside references required

SuperOdometry [2]

Background: IMU determines your upper bound

- IMU (Inertial Measurement Unit)
 - Fundamental: acceleration & angular velocity
 - **Popular**: Almost in any smart device
 - Low cost (cheap IMU only cost 2\$)
 - Robust Guaranteed (Inertial only)

Robustness

• No outside references required

Lidar may be blocked, Camera may fail, But IMU will not.

• Frequency and Accuracy

- High-frequency state estimation for **control**
- High-accuracy local state estimation

ALTO dataset [1]: IMU integration from helicopter flight data

Problems: IMU Noise and Uncertainty

- Reducing Noise: Drift is unavoidable due to integration and IMU noise.
- Characterizing Uncertainty: Uncertainty determines how long and how well you can trust the IMU

IMU integration on KITTI dataset

15

AirIMU: Model and Approach

Benefit:

- 1. Differentiable Integrator
- 2. Uncertainty-aware IMU model
- 3. Generalizable across modality

AirIMU serve dual purposes to correct noise and estimate the uncertainty

AirIMU: Model and Approach

1. We design a shared CNN-GRU encoder to encode raw IMU data.

2. To supervise covariance model we build a differentiable covariance propagation method.

Datasets and Benchmarks: Learning-based methods

TABLE I: Datasets summary										
Datasets	Duration	IMU	Modality							
EuRoC [12]	22m29s	ADIS16448	Drone							
TUM-VI [14]	13m31s	BMI160	Handheld							
SubtMRS [15]	2h52m	Epson M-G365	Ground robot							
KITTI [13]	43m44s	OXTS RT 3000	Vehicle							
ALTO [29]	2h12m	NG LCI-1	Helicopter							

Integration Accuracy: TUMVI, EuRoC

Learning inertial odometry: KITTI

Ablation Study: Subt-MRS

GPS-denied Navigation: ALTO

TUMVI: Automotive-Grade

19

TABLE II: The ROE (Unit: °) and RTE (Unit: meter) of IMU Pre-integration over 1 second (200 frames) on TUMVI dataset.

Seq. ROE RTE ROE ROE RTE ROE ROE <th>Sag</th> <th colspan="2">Raw IMU</th> <th colspan="2">Brossard et al. [21]</th> <th colspan="2">Kalibr [17]</th> <th colspan="2">AirIMU</th>	Sag	Raw IMU		Brossard et al. [21]		Kalibr [17]		AirIMU	
Room 2 2.3161 0.7652 0.7075 - 0.7006 0.0785 0.6765 0.0770 Room 4 2.8239 0.7558 0.4460 - 0.4397 0.0571 0.3930 0.0540 Room 6 2.3407 0.8521 0.4029 - 0.3923 0.4096 0.3743 0.4093 Avg. 2.4936 0.7910 0.5188 - 0.5109 0.1817 0.4813 0.1801	Seq.	ROE	RTE	ROE	RTE	ROE	RTE	ROE	RTE
Room 4 2.8239 0.7558 0.4460 - 0.4397 0.0571 0.3930 0.0540 Room 6 2.3407 0.8521 0.4029 - 0.3923 0.4096 0.3743 0.4093 Avg. 2.4936 0.7910 0.5188 - 0.5109 0.1817 0.4813 0.1801	Room 2	2.3161	0.7652	0.7075	-	0.7006	0.0785	0.6765	0.0770
Room 6 2.3407 0.8521 0.4029 - 0.3923 0.4096 0.3743 0.4093 Avg. 2.4936 0.7910 0.5188 - 0.5109 0.1817 0.4813 0.1801	Room 4	2.8239	0.7558	0.4460	-	0.4397	0.0571	0.3930	0.0540
Avg. 2.4936 0.7910 0.5188 - 0.5109 0.1817 0.4813 0.180	Room 6	2.3407	0.8521	0.4029	-	0.3923	0.4096	0.3743	0.4093
	Avg.	2.4936	0.7910	0.5188	-	0.5109	0.1817	0.4813	0.1801

EuRoC: Industrial-Grade IMU

Fig. 6: We present the RMSE error of both translation and velocity over intervals of 0.5s, 1s, 2s, and 3s. The results illustrate the accumulation of error throughout the integration, where the AirIMU exhibiting a reduced error after integration.

TABLE IV: Gyroscope integration on EuRoC Dataset, we show the R-RMSE and the ROE (Unit: °).

Sag	Base	line	Brossard	et al. [21]	AirIMU		
Seq.	RMSE	ROE	RMSE	ROE	RMSE	ROE	
MH02	4.5800	4.5799	0.1255	0.0871	0.0973	0.0789	
MH04	4.5406	4.5391	0.3556	0.1067	0.0836	0.0708	
V103	4.4909	4.4870	0.2181	0.1935	0.2107	0.1884	
V202	4.7000	4.6924	0.2595	0.2389	0.2366	0.2157	
V101	4.5275	4.5252	0.1346	0.1173	0.1413	0.1241	
Avg.	4.5678	4.5647	0.2189	0.1487	0.1305	0.1127	

KITTI: Tactical-Grade IMU

ΛIR

Subt-MRS: Tactical-Grade IMU

ALTO: Navigation-Grade IMU

IMU-centric PGO

IMU-centric GPS Graph optimization performed at 0.1 Hz.

Experiment Summary

Conclusion

AirIMU servers dual purposes to correct noise and estimate the uncertainty

Better uncertainty improves pose graph optimization and sensor fusion

Testing on a range of IMU types showcases the effectiveness of the method

Carnegie Mellon University The Robotics Institute

AnyLoc: Towards Universal Visual Place Recognition

Nikhil Keetha, Avneesh Mishra, Jay Karhade, Krishna Murthy Jatavallabhula, Sebastian Scherer, Madhava Krishna, Sourav Garg

Fundamental Question of "Where Am I"?

Humans & Robots alike need to know where they are for Scene Understanding & Navigation

How can we achieve this?

Degraded

Mid-Atlantic Ridge

♦ > 90° View Shift

Underwater

Hawkins

< 90° View Shift

SubT

Keetha et.al, AnyLoc: Towards Universal Visual Place Recognition, RA-L 2023 & ICRA 2024

삼 Indoor 🛛 🛥 Aerial

Laurel Caverns 🔺 🚥

🔆 🕧 Day Vs Night

Urban

29

Current State-of-the-art (SOTA) ...

Perform well in Training Distribution (Urban)

Do not generalize to diverse conditions

Self-Supervised Foundation Models for Generalization

Suboptimal when used as-is

AnyLoc: Use Intermediate Features from Self-Supervised Vire

Layer 31 Value has the best contrast.

AnyLoc: Unsupervised Local Feature Aggregation

Diverse Testbed consisting of 9 Datasets

Metric is Recall@K, i.e., % Accuracy using the Top K Retrievals

AnyLoc on a Visually Degraded Environment (Hawkins)

AnyLoc on a 500 Km Aerial Dataset (VP-Air)

Query Image

Top Retrieved Image

No Temporal Information Used

AnyLoc achieves up to 4X wider performance

Emergence of Distinct Domains in the Latent Space

Key Takeaway: Self-Supervised Visual Features enable Universal Generalization

Next Step: Precise 6-DoF Pose Estimation using Fine Pixel-level Features

Carnegie Mellon University The Robotics Institute

Geometry-Informed Distance Candidate Selection for Omnidirectional Stereo Vision with Fisheye Images

Conner Pulling, Je Hon Tan, Yaoyu Hu, Sebastian Scherer

Omnidirectional Depth is an important downstream task for UAVs!

IR

Using fisheye images increases coverage but also increases problem complexity.

Fisheye images cover a larger field-of-view (FOV) but stereo correspondences lie on epipolar **curves** instead of epipolar **lines**. Possible correspondences are found through **warping images** with depth guesses, called **depth candidates**, with a **cost volume**.

How does one choose depth candidates to build the cost volume?

Approach

Candidates can be sampled such that the angle between camera rays in the reference space is constant.

Note that this distribution changes when the baseline distance between cameras changes!

Geometry Informed (GI) Candidates Improve Performance when Baseline Changes.

Inverse Distance Candidates

Changing the baseline distance after training degrades performance.

Inverse Distance Candidates

Correcting the Geomtry Informed (GI) candidate distribution after training restores performance without finetuning.

Inverse Distance Candidates

Self-Occlusion Masking using Data Augmentation and Novel Cost Volume Aggregation

SOTA Dataset and Real-World Evaluation Setup

Synthetic Dataset with 100k+ samples, 70 Envs. (10x more samples than prev. work)

Models are compared using Mean Absolute Error (MAE), Root Mean-Squared Error (RMSE), and Structural Simularity Index Measure (SSIM) as in prior works.

Real World Inference In Outdoor Environments

Quantitative Results

1

╋

┺

			•	•		•		
model	candidates		metrics			time	GPU (MB)	
model	type	num	MAE	RMSE	SSIM	(ms)	start	peak
RS-E16	EV	16	0.075	0.129	0.699	146	820	2780
RS-G16	GI	16	0.076	0.129	0.713	140	020	2780
RS-E32	EV	32	0.053	0.101	0.776	144	1250	5120
RS-G32	GI	32	0.059	0.105	0.777	146	1250	5150
E8	EV	8	0.013	0.032	0.862	65	700	1020
G8	GI	8	0.012	0.029	0.867	05	190	1050
E16	EV	16	0.011	0.028	0.876			
G16	GI	16	0.010	0.028	0.877	111	790	1230
G16V	GI	16	0.013	0.028	0.875			
G16VV	GI	16	0.012	0.028	0.872	114	800	1090
EV.	distant land	and the second line	Latan CL		- C	DC. de la	DTCCLOL	and all all all all all all all all all al

EV: evenly distributed candidates. GI: geometry-informed. RS: the RTSS[2] model.

Better is... (Lower/ Higher)

GI Candidates, Variance Cost Volume (G16V), and Self-Occlusion Masking (G16VV) are all **better/comparable to learning baselines but are more robust and adaptable.**

Contributions & Conclusions

<u>VIR</u>

Current Limitations & Research Directions

Summary

- We have created several challenging datasets for SLAM and place recognition that reflect real-world challenges for autonomous systems and might be useful for your research.
- There is still a significant progress required in all parts from odometry, mapping, to place recognition
- Robustness is more important in actual applications. What happens at the edge or beyond the "envelope" of your method?

Online Camera Tracking & Reconstruction

SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM

Novel View Synthesis

SLAM Visualization

Keetha et.al, SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM, CVPR 2024

Rethinking SLAM Metrics for Robustness

Accuracy Metric: Estimate $\hat{\mathbf{X}}$ Aligned Estimate $\hat{\mathbf{X}}'$ Trajectory Alignment Groundtruth \mathbf{X} $ATE_{rot} = (\frac{1}{N} \sum_{i=0}^{N-1} || \angle (\Delta \mathbf{R}_i) ||^2)^{\frac{1}{2}},$ $ATE_{pos} = (\frac{1}{N} \sum_{i=0}^{N-1} || \Delta \mathbf{p}_i ||^2)^{\frac{1}{2}},$

Does not consider impact of local bad measurements

Robustness Metric:

$$F_1(e) = \frac{2P(e < T)R(e < T)}{P(e < T) + R(e < T)},$$

Considers both Accuracy and Completeness

Example Robustness Metric Evaluation from ICCV 2023 SLAM Challenge

			Visual Degrada	Simulation						
Team	Lowlight 1	Lowlight 2	Over Exposure	Flash Light	Smoke Room	Outdoor Night	End of World	Moon	Western Desert	Average
Peng et al ¹	1.063	1.637	0.503	0.44	0.153	0.827	0.038	0.195	0.070	0.547
Thien et al ²	1.081	2.054	1.733	1.054	10.532	7.692	0.753	1.228	1.209	3.037
Jiang et al ³	1.019	1.126	1.911	2.341	3.757	11.821	2.154	0.604	4.010	3.193
Li et al ⁴	5.768	7.834	1.757	1.295	5.370	10.766	-	30.07	-	8.98^*
Average	2 232	3 163	1 476	1 282	4 953	7 776	0.982	8 0 2 4	1 763	

Table 4. Accuracy Performance on Visual Degradation. Red numbers represent ATE ranking. * denotes incomplete submissions.

Figure 5. From left to right, it shows robustness metric R_p and R_r for LiDAR and visual sequences respectively. Note: This is a summary of results for all sequences, with weights based on the trajectory length. The area under the curve (AUC) represents the robustness (R_p , R_r). The x-axis shows velocity thresholds for classifying estimated velocities as inliers and the y-axis is F-1 score.

The area under the curve represents the robustness metric

Questions?